
Interoperability Specification for ICCs
and Personal Computer Systems

Part 9. IFDs with Extended Capabilities
Apple Computer, Inc.

Axalto

Gemplus SA

Infineon Technologies AG

Ingenico SA

Microsoft Corporation

Philips Semiconductors

Toshiba Corporation

Revision 2.01.01

September 2005

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

Copyright © 1996–2005 Apple, Axalto, Gemplus, Hewlett-Packard, IBM, Infineon, Ingenico, Microsoft,
Philips, Siemens, Sun Microsystems, Toshiba and VeriFone.

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY. AXALTO, BULL CP8, GEMPLUS,
HEWLETT-PACKARD, IBM, MICROSOFT, SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA, AND
VERIFONE DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF
PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS
SPECIFICATION. AXALTO, BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT,
SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA, AND VERIFONE, DO NOT WARRANT OR
REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Windows and Windows NT are trademarks and Microsoft and Win32 are registered trademarks of Microsoft
Corporation.
PS/2 is a registered trademark of IBM Corp. JAVA is a registered trademark of Sun Microsystems, Inc. All
other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

 1996–2005 PC/SC Workgroup. All rights reserved. Page ii

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

Revision History

Revision Issue Date Comments
2.00.10 May 28, 2004 Spec 2.0 Final Draft
2.01.00 June 23, 2005 Final Release
2.01.01 September 29, 2005 Changed Schlumberger to Axalto

 1996–2005 PC/SC Workgroup. All rights reserved. Page iii

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

Contents

1 SYSTEM ARCHITECTURE 1

2 APPLICATION CONTEXT 2

2.1 Introduction 2

2.2 Definition 2

2.3 Association with IFDs 2

2.4 Resource Locking 3

3 LOGICAL DEVICES 4

3.1 Slot Logical Devices and Multi-slot ICC Readers 4

3.2 Functional Logical Devices 4

4 IFD SERVICE PROVIDER 6

4.1 Functional Definition 6
4.1.1 Syntax 6
4.1.2 Data types 6
4.1.3 Calling Conventions 7
4.1.4 Data structure 8

4.1.4.1 PINBLOCK 8
4.1.4.2 PINVERIFY 9
4.1.4.3 PINCHANGE 10

4.1.5 Defined constants 10
4.1.6 Error codes 12
4.1.7 Required Interface 14

4.1.7.1 Class ENHANCEDIFD 14
4.1.8 Optional Interfaces 16

4.1.8.1 Class SECUREPIN 16
4.1.8.2 Class DISPLAY 18
4.1.8.3 Class USERCONFIRMATION 19
4.1.8.4 Class USERENTRY 19

4.2 Examples 20

5 GUID REFERENCES 22

5.1 PC/SC Application Contexts 22

5.2 Interface IDs 23

 1996–2005 PC/SC Workgroup. All rights reserved. Page iv

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

1 System Architecture
The general architecture of the Interoperability Specification is described in detail in Part
1 of this document and is summarized following. This part deals with the management of
IFDs with some extended capabilities such as secure PIN entry or user interface
functionality. IFDs with extended capabilities are also called in this specification
enhanced IFDs. To manage such type of functionality, this part describes a specific
element of the architecture, the IFD Service Provider (IFDSP), indicated by the shaded
area of the figure.

IFD Service Provider

ICC Service Provider

 IFD
Handler

 IFD
Handler

 IFD
Handler

ICC Aware Applications

ICC Resource Manager

 IFD IFD

ICC ICC

 IFD

ICC

Figure 1-1 PC/SC Architecture

 1996–2005 PC/SC Workgroup. All rights reserved. Page 1

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

2 Application Context

2.1 Introduction

In many cases, some IFDs have some extra-capabilities other than just APDU
communication. Such capabilities may be relative to some security requirements (e.g.
secure PIN entry, biometric components, cryptography, …) or to some ergonomic
reasons (e.g. use of the display/keypad features of a device). Many other capabilities
may be found in different types of devices but only a limited number of capabilities is
specified in this document. However, they can be included within the architecture
described further on and as an extension of this specification.

2.2 Definition

An application context is a list of requirements on the IFD side in order to execute a
particular ICC aware application or ICC Service Provider. It is associated to a set of
functionality present in a given IFD. Some examples of requirements are:

• presence of trusted components in the IFD,
• required functionality list of the IFD —which can imply functions that shall not be

supported (example: user entry other than PIN entry not supported)—,
• permitted PIN processing APDU commands,
• IFD authentication,
• sharing of physical/logical components of the IFD.

This application context can be defined for a particular card application or for a set of
card applications. It may be defined by the card issuer or the on-card application
developer. For example, an application context may be defined by a payment or health
care system.

In order to run a particular application context, the IFD has to support this context. In
most of the cases, this context will have to be implemented by the IFD supplier as it
references the particular characteristic of an IFD. The way to implement an application
context and to verify that a given IFD is compliant with an application context is outside
of these specifications. For this purpose, some other rules might be defined by the entity
defining an application context.

2.3 Association with IFDs

Some query functions are present at the Resource Manager level in order to test the
support of an application context and to get an application context list for different IFDs.
Only the support of an application context can be queried but not its presence. That
means that an IFD may support an application context but it might not be currently
available in the IFD. It might be downloaded to the IFD when necessary that is when the
application context will have to be used. This download process is outside of these
specifications and should be transparent to the application.

Each IFD which supports application contexts offers new functionalities for ICC Service
Providers and ICC Aware application. These new functionalities which correspond to a
new API appears at the IFD Service Provider level as interfaces. For a same interface,
different application contexts may exist and for a given application context, different

 1996–2005 PC/SC Workgroup. All rights reserved. Page 2

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

interfaces may exist.

2.4 Resource Locking

The reservation and the locking of some IFD resources are also defined within the
application context and they are implemented in the IFD subsystem and/or IFDSP
depending on the security level to be achieved and on the intelligence of the IFD (see
further on the logical devices). This locking defines, for example, if, for an IFD, two
sessions with two application contexts identical or not can be opened at the same time.
A typical reason where sharing could not be enable is because of the security. In this
case, the application context may define, for example, that the entire physical device be
locked as long as the execution within the application context is not completed. In some
other cases, the logic itself may imply locking. For example, it does not make sense that
a display be used from one side and the keypad used by another application.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 3

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

3 Logical Devices

In a concrete implementation, an IFD handler may be capable to deal at the same time
with several physical IFDs (same model or not). Therefore, an IFD handler may expose
several IFD devices. But, in a case of multi-slot readers or enhanced readers, an IFD
handler can expose more logical devices.

3.1 Slot Logical Devices and Multi-slot ICC Readers

Some of the smart card readers have more than one ICC slot. The main purpose is to
have in the same physical device the user card and one or several Security Application
Modules (SAMs). Some examples of applications are in the Electronic Purse domain
with the customer card and the merchant card or in health care with the patient card and
the physician card.

The handling of these different slots shall be treated as if there were different physical
devices or mono-slot IFDs. Therefore, each slot is referenced by a different
ReaderName. These slot logical devices have the interface detailed in the appendix A
part 3 of this document. From now, to keep the current terminology, a slot is identified to
a reader and in an IFD, which is a physical device unit, several slots or readers may
coexist.

3.2 Functional Logical Devices

If an IFD has some extended capabilities, it may expose other devices than just slot
devices. Depending on the flexibility and the security, one or several functional logical
devices can be exposed. The main role of these functional logical devices is to enable
the IFDSP via the Resource Manager to lock independently different types of
functionality.

This second type of logical device, the functional logical device, can be in direct relation
with a physical part of an enhanced IFD such as a display functional logical device or a
keypad functional logical device. It can also regroup several physical parts such as a
PinPad functional logical device, which may use a display and a keypad or represent a
subset of the functionalities of a physical part. The functional logical device unlike the
slot device supports only a generic communication channel.

This notion of functional logical device layout should be transparent to the ICC-aware
application or ICCSP. It is only a mean for the IFDSP to lock through the Resource
Manager a functional unit and to deal in a proprietary way with the communication to the
IFD to manage the extended capabilities. The application has only an interface view of
the IFDSP.

The example of configuration given in Figure 3-1 is only an implementation example.
Indeed, with the same extended types of functionality with a display and a keypad, the
logical devices decomposition could be totally different for the first pictured IFD. There
can be only two slot logical devices and a global functional logical device. The only
reason to have multi-functional logical devices is to give to the IFDSP more freedom
about the locking of the devices through the Resource Manager. This may or may not
enable some applications to access at the same time different types of functionality of an
enhanced IFD.

As these configurations are completely independent of the way an ICC-aware

 1996–2005 PC/SC Workgroup. All rights reserved. Page 4

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

application or ICCSP uses an IFDSP and as only the proprietary implementation of the
IFDSP (IFD dependent) use the particular decomposition into logical devices, an
interoperability between different enhanced readers with the same types of extended
functionality can occur as long as the same interfaces are exposed by the different
IFDSPs.

To simplify resource sharing implementation, in the revision 2.0 of this specification,
functional logical devices are always associated to a slot logical device. Therefore, doing
a connection to a functional logical device must be done with a ReaderName and it is
not possible to lock separately functional logical devices and also to lock them
independently of a slot logical device.

ICC Aware Applications

ICC Service Provider

IFD Service Provider

ICC Resource Manager

Logical Devices Slot Slot Display Keypad Slot Slot

IFD
Handler

IFD
Handler

 IFD IFD IFD

ICC

ICC

ICC

ICC

Figure 3-1 Logical Device Configuration Example

 1996–2005 PC/SC Workgroup. All rights reserved. Page 5

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4 IFD Service Provider

The IFD Service Provider exposes the extra capabilities of an IFD and in such is
delivered by the IFD supplier. The IFD Service Provider is an optional component. It
communicates to the IFD handler via the Resource Manager. This communication
channel is proprietary to the IFD supplier as long as it respects the interface of the
Resource Manager.

As for the ICC Service Provider, different interfaces may be supported by the IFD
Service Provider. A mandatory interface is described below as well as some optional
interfaces that an IFD may be capable to support. The types of optional interfaces
depend on the functionalities of an IFD, on the security to be achieved. However, to be
interoperable between different IFDs supporting the same functionality specified
hereafter, the IFD Service Provider should provide the ad hoc interfaces detailed in this
part.

4.1 Functional Definition

This section describes the functional interfaces of the IFDSP. The interface is described
in terms of object classes, and methods on object instances, along with required
parameters and expected return values. Implementations may alter the naming
conventions and parameters as required to adapt to specific environments, but shall
conform to the functional interfaces defined herein.

4.1.1 Syntax

The syntax used in describing the IFDSP is based on common procedural language
constructs. Data types are described in terms of common C-language due to its
widespread use. The following table lists specific conventions and pre-defined values
used in this document.

4.1.2 Data types

Type Characteristic
BYTE unsigned char, a 8-bit value
USHORT unsigned short, a 16-bit value
BOOL short, a 16-bit value
DWORD unsigned long, a 32-bit value
STR char array (string)
GUID unsigned char[16], a 128-bit unique identifier to reference a

component
IID unsigned char[16], a 128-bit unique identifier to reference an

interface
ACID unsigned char[16], a 128-bit unique identifier to reference an

application context
RESPONSECODE long, signed 32-bit value
HANDLE unsigned long, a 32-bit quantity

 1996–2005 PC/SC Workgroup. All rights reserved. Page 6

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

VOID unspecified data type whose interpretation is context-specific.

Arrays of these basic data types are indicated by []. For example BYTE[] indicates an
array of BYTE values of unspecified length. BYTE[4] indicates an array of BYTE values
with four elements.

Data structures are indicated using C-language “struct” type definitions. The following
example defines a data structure consisting of a BYTE and DWORD value that is
referenced using the SAMPLE_STRUCT identifier.

typedef struct {
 BYTE ByteValue
 DWORD DwordValue
} SAMPLE_STRUCT ;

4.1.3 Calling Conventions

The interface to the IFDSP is defined in terms of methods associated with one-high level
object. Methods are invoked by referencing a named method within the context of an
object instance. How the object is referenced is not specified, because this may vary by
implementation. Methods require zero or more parameters and return information using
a simple data type and optional output parameters.

For example,

RESPONSECODE MethodA(
 IN DWORD DwordValue
 IN OUT BYTE ByteValue
 OUT BYTE OutValue
}

defines a method with 3 parameters which returns a RESPONSECODE value. It has two
input parameters (DwordValue and ByteValue) and returns additional information in two
output parameters (ByteValue and OutValue).

 1996–2005 PC/SC Workgroup. All rights reserved. Page 7

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.1.4 Data structure

4.1.4.1 PINBLOCK

The structure PINBLOCK is used to define the format of the PIN for the SECUREPIN
interface.

typedef struct {
DWORD Attributes; // refers to the PIN overwritting

format as defined by the
PINATTRIBUTE constants. Can be
combined with a binary OR

USHORT PINBlockLength; //length of the PINBlock in bytes
USHORT NbCharMin; // minimum number of characters to be

a valid PIN value
USHORT NbCharMax; // maximum number of characters to be

a valid PIN value
USHORT PINBitOffset; // position in bits in the APDU

data field to overwrite with the
formatted PIN. It is a position
from the left if it is
LEFT_JUSTIFIED and a position from
right for RIGHT_JUSTIFIED

USHORT NbCharBitLength; // size in bits of the “number of
characters of the entered user
PIN” to overwrite in the APDU at
nbCharBitOffset

USHORT NbCharBitOffset; // position in bits from the left
side in the APDU data field to
overwrite the number of
characters of the entered user
PIN

} PINBLOCK;

PINBLOCK Parameters

PIN Value

Between NbCharMin and
NbCharMax characters

PINBitOffset (bits)
(if LEFT_JUSTIFIED)

NbCharBitLength (bits)
NbCharBitOffset (bits)

NbChar

PINBlockLength (bytes)

An example of use is given in the paragraph 4.1.8.1.

Remark: NbCharBitLength should be coherent with NbCharMax.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 8

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.1.4.2 PINVERIFY

The structure PINVERIFY is used to define the format of the PIN for the SECUREPIN
interface.

typedef struct {
PINBLOCK PINBlockFormat; // formatting parameters of the

PIN block
USHORT PINBlockByteOffset; // position in bytes in the

APDU data field to overwrite with
the PIN block

} PINVERIFY;

PINVERIFY Block

PINBlock

PINBlockByteOffset (bytes)

 1996–2005 PC/SC Workgroup. All rights reserved. Page 9

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.1.4.3 PINCHANGE

The structure PINCHANGE is used to define the format of the PIN for the SECUREPIN
interface.

typedef struct {
PINBLOCK PINBlockFormat; // formatting parameters of the

PIN block
USHORT PINBlock1ByteOffset; // position in bytes of the

PIN Block #1 which corresponds to
the current PIN (the max value of
USHORT corresponds to no
PINBlock#1). This block is
optional.

USHORT PINBlock2ByteOffset; // position in bytes of the
PIN Block #2 which corresponds to
the new PIN

} PINCHANGE;

PINBlock2ByteOffset (bytes)

PINBlock #2

PINCHANGE Block

PINBlock #1

PINBlock1ByteOffset (bytes)

4.1.5 Defined constants

Parameter Symbol Comments
PINATTRIBUTE Bit values which can be

combined in a bit mask
 NUMERIC PIN is only composed of digits.
 ALPHANUMERIC PIN can be composed of digits

and letters.
 UPPER_ALPHANUMERIC PIN can be composed of digits

and uppercase letters.
 ASCII Characters are coded in ASCII

format.
 UNICODE Characters are coded in

UNICODE format.
 BCD Characters (only digits) are

coded in BCD format.
 LEFT_JUSTIFIED PIN is left-justified.
 RIGHT_JUSTIFIED PIN is right-justified.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 10

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

Parameter Symbol Comments

PIN_INPUT_FEEDBACK
 KEY_FIRST The user has pressed a key.

This is sent only the first time
and this used by in the
BEGIN_END event capability
mode.

 KEY_CHARACTER A valid character has been
entered.

 KEY_CORRECTION A correction key has been
pressed.

 KEY_VALIDATION The validation key has been
pressed (end of PIN entry).

 KEY_INVALID An invalid character has been
entered.

 OP_OLD_PIN For a PIN Change operation,
indicates that the old PIN needs
to be entered.

 OP_NEW_PIN For a PIN Change operation,
indicates that the new PIN
needs to be entered.

 OP_CONFIRMATION For a PIN Change operation,
indicates that the new PIN
needs to be re-entered for
confirmation.

FEEDBACKCAPABILILITY
 IFD The IFD handles automatically

the feedback for the PIN entry,
usually via its display

 IFDSP The IFD cannot handle the PIN
entry feedback and this has to
be handled by the IFDSP on the
PC via a GUI for example.

 NONE The PIN entry feedback should
not be handled by the IFDSP

EVENTCAPABILITY
 NONE The IFD does not return any

information about PIN entry
 BEGIN_END The IFD can notify when the

 1996–2005 PC/SC Workgroup. All rights reserved. Page 11

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

Parameter Symbol Comments
user has begin to enter the PIN
and when this has been ended

 KEYSTROKE The IFD can notify during the
PIN entry when a key is pressed

4.1.6 Error codes

Error, Warning, and Failure codes.

Symbol Meaning

SCARD_S_SUCCESS No error was encountered.

SCARD_E_INSUFFICIENT_BUFFER The data buffer to receive returned data is too small for
the returned data.

SCARD_E_INVALID_HANDLE The supplied handle was invalid.

SCARD_E_INVALID_PARAMETER One or more of the supplied parameters’ could not be
properly interpreted.

SCARD_E_INVALID_TARGET Configuration startup information is missing or invalid.

SCARD_E_INVALID_VALUE One or more of the supplied parameters’ values is not
valid.

SCARD_E_NO_MEMORY Not enough memory available to complete this
command.

SCARD_E_NO_SMARTCARD The operation requires an ICC, but no ICC is currently in
the device.

SCARD_E_READER_UNAVAILABLE The specified IFD is not currently available for use.

SCARD_E_SHARING_VIOLATION The ICC cannot be accessed because of other
connections outstanding.

SCARD_E_SYSTEM_CANCELLED The action was cancelled by the system, presumably to
log off or shut down.

SCARD_E_TIMEOUT The user-specified timeout value has expired.
SCARD_E_UNSUPPORTED_INTERFACE The specific interface is not supported in this service

provider
SCARD_E_UNSUPPORTED_CONTEXT The specific application context is not supported by the

IFD subsystem

SCARD_E_METHOD_NOT_ALLOWED The method cannot be used with the current application
context

SCARD_E_UNKNOWN_CARD The specified ICC name is not recognized.

SCARD_E_UNKNOWN_READER The specified IFD name is not recognized.

SCARD_F_COMM_ERROR An internal communications error has been detected.

SCARD_F_INTERNAL_ERROR An internal consistency check failed.

SCARD_F_UNKNOWN_ERROR An internal error has been detected, but the source is
unknown.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 12

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

Symbol Meaning
SCARD_W_REMOVED_CARD The card has been removed, so further communication is

not possible. This error may be cleared by the
SCardReconnect service.

SCARD_W_RESET_CARD The card has been reset, so any shared state information
is invalid. This error may be cleared by the
ScardReconnect service.

SCARD_W_UNPOWERED_CARD Power has been removed from the card, so further
communication is not possible. This error may be cleared
by the ScardReconnect service.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 13

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.1.7 Required Interface

The following is a generic description of the standard interface that must be supported
by compliant IFD Service Provider. This description is suitable for implementation in a
variety of languages on a variety of systems.

4.1.7.1 Class ENHANCEDIFD

4.1.7.1.1 Properties
HANDLE hContext //handle to the Resource Manager. Set to NULL at

object //creation.

4.1.7.1.2 Methods

ENHANCEDIFD()
Creates an instance of the ENHANCEDIFD class and returns a reference to
the calling module. The type of this object is implementation specific.

~ENHANCEDIFD()
Deletes an instance of the ENHANCEDIFD class. If hContext is valid, this
method calls the Detach() method before destroying the object.

RESPONSECODE AttachByReader(
IN STR ReaderName
)
Opens a connection to the IFD Service Provider. The ReaderName
parameter defines which reader the extended functions are relative to. The
main purpose of this function is to perform a validity check and allocate the
necessary communication resources.
This Attach function should be used when the extended function does not
concern directly an operation with a smart card. Otherwise, the method
AttachByHandle should be used.

RESPONSECODE AttachByHandle(
IN HANDLE hCard
)
Opens a connection to the IFD Service Provider. The hCard parameter fixes
the reader to be used for the extended functions and more particularly the
card inserted in the reader. This function should be used when the extended
functions are in relation with the smart card inserted and when probably
some communication with the smart card will occur to carry out the specific
functions. This insures to the application that the smart card is not removed
during the operation.

RESPONSECODE Detach()
Releases the communication context associated with the hContext property
and resets hContext to NULL.

RESPONSECODE SelectContext(
IN ACID ApplicationContext //Unique Identifier of an Application Context
IN DWORD TimeOut //Time-out to get the context in miliseconds

 1996–2005 PC/SC Workgroup. All rights reserved. Page 14

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

)
Selects a given ApplicationContext for the current instance of
ENHANCEDIFD. If the ApplicationContext is not supported by the IFD
subsystem, a SCARD_E_UNSUPPORTED_CONTEXT error is returned. If
some IFD resources are not available (for example taken by another
application context opened), the method waits at most for TimeOut for
allocation liberation.
Only one context can be selected at one time for the instance of
ENHANCEDIFD.

RESPONSECODE ReleaseContext()
Deselects the current Application context. All the interface objects created
within the previous Application Context are not anymore valid.

RESPONSECODE Cancel()
Cancels the current pending SelectContext request.

RESPONSECODE CreateSecurePIN(
OUT SecurePIN aSecurePIN
)

RESPONSECODE CreateDisplay(
OUT Display aDisplay
)

RESPONSECODE CreateUserConfirmation(
OUT UserConfirmation aUserConfirmation
)

RESPONSECODE CreateUserEntry(
OUT UserEntry aUserEntry
)

RESPONSECODE CreateInterface(
IN IID IFDSPInterface //Unique identifier of the interface object to be

created
OUT VOID InterfaceObject
)
These five methods either return a SCARD_SUCCESS, meaning that the
requested object was successfully created or a
SCARD_E_UNSUPPORTED_INTERFACE, meaning that the requested
interface is not supported by that Service Provider with the current
Application context (an application context has to be selected previously).

 1996–2005 PC/SC Workgroup. All rights reserved. Page 15

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.1.8 Optional Interfaces

The following is a generic description of the optional interfaces defined for compliant IFD
Service Providers. If an IFD Service Provider exposes secure PIN, display, user
confirmation or user entry service, they should be exposed through these interfaces. If
they do not support this functionality, then these interfaces need not be supported. Some
other methods (and interfaces) may be specified in the future such as GetOnlinePIN,
SubmitBiometrics, AcquireBiometrics, GetOnlineBiometrics.

In the following interfaces, a method may be unavailable for a certain application context
due to security reasons for example. In this case, the
SCARD_E_METHOD_NOT_ALLOWED error is returned by the method.

4.1.8.1 Class SECUREPIN

This class is intended to be an interface to the device’s PIN entry functionality. The
security level provided is a function of the IFD subsystem and IFDSP implementations.
This class definition does not provide any additional security.

RESPONSECODE GetCapabilities(
OUT DWORD PINAttributes // PIN Attributes capabilities as defined by the

PINATTRIBUTE constants (bit set to 1 when
feature is supported)

OUT USHORT Feedback // Feedback Capability as defined by the
FEEDBACKCAPABILITY constants

OUT USHORT Event // Event Capability as defined by the
EVENTCAPABILITY constants

OUT BOOL PINEntryNotification // indicates the capability for an IFD to inform the
user about PIN entry

)
Returns the capabilities of the SECUREPIN service as far as feedback from
the PIN entry is concerned. For Feedback, only IFD or IFDSP value can be
returned. If the IFD cannot handle the feedback, it is mandatory that the
IFDSP provide a default feedback. It is up to the service caller to use it or not.
PINEntryNotification is TRUE if the IFD will indicate that the user has to enter
a PIN during the Verify and Change methods. If PINEntryNotification is
FALSE, the application has to handle the user notification, for example via
the DISPLAY class.

RESPONSECODE SetFeedback(
IN USHORT FeedbackMethod // Defines the feedback method via the

FEEDBACKCAPABILITY constants
IN VOID EventCallback // Callback Function Pointer with an event to

indicate when a key is pressed.
)
If the feedback capability is IFD, only IFD feedback method can be used
otherwise either NONE or IFDSP can be used. The EventCallback method is
used for the feedback event notification according to the EVENTCAPABILITY
of the IFD.

The prototype of the EventCallback method is:
RESPONSECODE EventCallback(

IN PIN_INPUT_FEEDBACK Event // Event type

 1996–2005 PC/SC Workgroup. All rights reserved. Page 16

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

)

If EVENTCAPABILITY is BEGIN_END only KEY_VALIDATION and the
KEY_FIRST are received for the ‘KEY_…’ constants. If EVENTCAPABILITY
is KEYSTROKE, all ‘KEY_…’ are received except KEY_FIRST. If
EVENTCAPABILITY is NONE, no PINFEEDBACK is received.

RESPONSECODE Verify(
IN SCARD_IO_HEADER SendPci // Send protocol structure
IN BYTE[] SendBuffer // Predefined APDU in which the IFD fills in the APDU
IN PINVERIFY PinFormat // Structure which specify how to format the PIN code.
IN DWORD TimeOut // time-out for the user entry in milliseconds
OUT SCARD_IO_HEADER RecvPci // Receive protocol structure
OUT BYTE[] RecvBuffer // Data buffer for ResponseAPDU
OUT DWORD RecvLength // Length of RecvBuffer
)
This method handles the PIN entry, builds the PINVERIFY block and sends
the block to the ICC. If the feedback handling is to be used, the SetFeedback
method shall be called first.
The Verify method overwrites the data field of the APDU (after the bytes CLA,
INS, P1, P2, Lc) with the PINVERIFY block formatted with the PinFormat
rules.
For example, for a PIN value of 12345 to be inserted in the APDU '00 20 00
00 09 66 FF FF FF FF FF FF FF FF' with PINBlockByteOffset set to 1 byte
and PINBlock.PINBitOffset set to 4 bits

• with PINBlock.NbCharBitLength = 0 bits
• with PINBlock.Attributes set to (BCD | RIGHT_JUSTIFIED), the

resulting APDU to be sent is '00 20 00 00 09 66 FF FF FF FF FF
12 34 5F'

• with PINBlock.Attributes set to (BCD | LEFT_JUSTIFIED), the
resulting APDU to be sent is '00 20 00 00 09 66 F1 23 45 FF FF
FF FF FF'

• with PINBlock.NbCharBitLength = 4 bits and
PINBlock.NbCharBitOffset = 4 bits
• with PINBlock.Attributes set to (BCD | RIGHT_JUSTIFIED), the

APDU to be sent is '00 20 00 00 09 66 F5 FF FF FF FF 12 34 5F'.
• with PINBlock.Attributes set to (BCD | LEFT_JUSTIFIED), the

APDU to be sent is '00 20 00 00 09 66 F5 12 34 5F FF FF FF FF'.

RESPONSECODE Change(
IN SCARD_IO_HEADER SendPci // Send protocol structure
IN BYTE[] SendBuffer // Predefined APDU in which the IFD fills in the APDU
IN PINCHANGE PinFormat // Structure which specify how to format the PIN

code.
IN DWORD TimeOut // time-out for the user entry in milliseconds
OUT SCARD_IO_HEADER RecvPci // Receive protocol structure
OUT BYTE[] RecvBuffer // Data buffer for ResponseAPDU
OUT DWORD RecvLength // Length of RecvBuffer
)
Submits to the ICC a PIN code change, given the APDU to send to the smart
card and the PIN format. For this operation, the current PIN may have to be
entered. The formatting of the PIN is similar to the Verify method except that

 1996–2005 PC/SC Workgroup. All rights reserved. Page 17

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

two PIN blocks may be used for optionally the current PIN and for the new
PIN. The feedback handling has to be set through the SetFeedback method.
The Change method overwrites the data field of the APDU with the
PINCHANGE block formatted with the PinFormat rules.

RESPONSECODE Cancel()
Cancels the current pending Verify or Change request.

Warning: the IFD subsystem as defined in Part 3 should filter the APDU through a
definition given in the Application Context in order to make sure that the APDU to be
sent to the ICC is really a VERIFY APDU (determined by CLA and INS of the APDU) or
CHANGE APDU command. If this is not done, there is a potential security risk where an
application could use a WRITE BINARY APDU, instead, in order to write in clear the PIN
in a free zone of the ICC and, then, with a READ BINARY it could be possible for the
application to retrieve the user PIN. This is also the case for the Change method.

4.1.8.2 Class DISPLAY

Only basic character display is considered in this service, as it is the most common
interoperable capability. Addressing in the virtual screen is used for devices with
scrolling capabilities (virtual dimensions greater than physical dimensions). If a device
does not support it, the physical and the virtual dimensions should be identical.

RESPONSECODE ClearDisplay()
Erases the virtual text screen content.

RESPONSECODE GetCharacterDisplayResolution(
OUT USHORT nPhysicalColumnCount // Number of columns for the

physical screen
OUT USHORT nPhysicalRowCount // Number of rows for the physical

screen
OUT USHORT nVirtualColumnCount // Number of columns for the virtual

screen
OUT USHORT nVirtualRowCount // Number of rows for the virtual screen
)
A non-proportional font is assumed in this display service. If it is not the case,
the screen size should be returned with the larger character taken into
account.

RESPONSECODE DisplayMessage(
IN STR Message // Message in Unicode
IN USHORT x // x coordinate in the virtual screen
IN USHORT y // y coordinate in the virtual screen
IN DWORD MinTime // Minimum time for the message to be displayed in

milliseconds
)
Automatic wrapping is not performed by this method. Scrolling if supported
should be handled directly by the device (automatically or manually). The
origin (0,0) is at the upper left.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 18

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.1.8.3 Class USERCONFIRMATION

RESPONSECODE GetConfirmation(
IN DWORD TimeOut // Time-out for the user confirmation in milliseconds
OUT BOOL Confirmation // True or false
)
The IFD enters in a mode where the user has to validate or cancel via a
validation or cancel key for example.

RESPONSECODE Cancel()
Cancels the current pending GetConfirmation request.

4.1.8.4 Class USERENTRY

Warning: there is a potential security hazard if the SECUREPIN interface and the
USERENTRY are supported. Indeed, a fake PIN entry request might be made by an
application through the USERENTRY interface.

RESPONSECODE GetString(
IN DWORD TimeOut // Time-out for the user entry in milliseconds
OUT STR UserData // Return from the User Entry in Unicode
)
The IFD enters in a mode where a user can enter some information via a
keyboard for example. This operation may be ended by a validation key.

RESPONSECODE Cancel()
Cancels the current pending GetString request.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 19

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

4.2 Examples

This paragraph gives an example for an ICC-aware application or an ICCSP of a typical
use of an IFDSP.

An application A requires that an application context ACIDac be implemented in the IFD
and the application needs to use the interface defined by the IIDi (this interface is used
through the IFDSP).

The application can wait for a card in the slots which support this ACIDac (the list of the
readers can be determined through the ListReaders and then Control with
IFD_List_Contexts for each reader via the Resource Manager) or check when the card
has been inserted if the slot can support the ACIDac (through Control with
IFD_List_Contexts via the Resource Manager). In the same manner, through Control
with IFD_List_Interfaces via the Resource Manager the application can check that the
reader supports the interface IIDi.

Let’s say that the card of A has been inserted in the right slot ReaderName and that a
connection to the card has already been established (with the handle hCard) and that
some APDUs have been transmitted to the card. Now, the application needs to use the
generic interface IIDi:

ResourceManager.Control(GET_IFDSP, &IFDSP_ID) //get the GUID
 // of the principal IFDSP
IFDSP=CreateObject(IFDSP_ID) //OS-Specific
IFDSP.AttachByHandle(hCard)
IFDSP.SelectContext(ACID ,timeout) ac

OBJi=IFDSP.CreateInterface(IIDi) //OS-Specific
OBJ .Method1() // Method of the i

 // interface GUIDi
(...)
IFDSP.Detach()

The following figure shows two possible implementations of an IFDSP. The first one is
decomposed into two components: a Principal which is referenced by the Resource
Manager under IFDSP_ID and which implements the interface ENHANCEDIFD, and the
class Classi referenced by the GUIDIFDSP – i which implements the interface IIDi. In the
second version, there is only one global IFDSP which implements the interface
ENHANCEDIFD and the interface IIDi. During the IFDSP.CreateInterface() in the second
type of implementation, the object returned will be in fact the same object, i.e. IFDSP.
For the first implementation, it is an instance of Classi which is returned. This way, via
the CreateInterface method, the application can be really independent of the real
structure and implementation of the IFDSP.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 20

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

IFDSP decomposed in a Principal and a Global IFDSP

Principal IFDSP + interface IIDi

IFDSP_ID
Classi (interface IIDi)

GUIDIFDSP_ID - i

Principal IFDSP

IFDSP_ID

Figure 4-1 Examples of IFDSP Structure

 1996–2005 PC/SC Workgroup. All rights reserved. Page 21

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

5 GUID References

5.1 PC/SC Application Contexts

Four application context examples are described within this part 9:

PCSC_DISPLAY Application Context:
• The DISPLAY interface is required and at least the access to the display is

reserved to the application.

PCSC_DISPLAY_USERENTRY Application Context:
• The DISPLAY and USERENTRY interface are required and at least the

access to the display and keypad is reserved to the application.

PCSC_STANDARD Application Context:
• A secure keypad is required in order that the PIN be directly transmitted to

the smartcard without leaving the IFD.
• The permitted PIN processing commands for the verify command and

referenced by ISO 7816-4 are with an instruction byte 0x20 and the class
byte is included in the ranges 0x00-0x0F, 0x80-0x8F, 0x90-0x9F, 0xA0-0xAF
and 0xB0-0xCF.

• The SECUREPIN interface is required.
• A general user entry such as the USERENTRY interface is not allowed when

this application context is selected. However, DISPLAY and
USERCONFIRMATION interfaces are allowed. This is to prevent a fake PIN
entry.

PCSC_ENHANCED Application Context:
• A secure keypad is required in order that the PIN be directly transmitted to

the smartcard without leaving the IFD.
• The permitted PIN processing commands for the verify command and

referenced by ISO 7816-4 are with an instruction byte 0x20 and the class
byte is included in the ranges 0x00-0x0F, 0x80-0x8F, 0x90-0x9F, 0xA0-0xAF
and 0xB0-0xCF.

• The SECUREPIN interface is required.
• It is not possible to use other interfaces, which involve “transparent use” of

the keyboard and the display of the IFD, such as DISPLAY, USER
CONFIRMATION or USERENTRY interfaces. This is to prevent fake PIN
entry and fake information on display.

Application Context ACID

PCSC_DISPLAY e2eb96e4-4984-11d3-83fc-
0080c7e29271

PCSC_DISPLAY_USERENTRY e3866666-4984-11d3-83fc-
0080c7e29271

PCSC_STANDARD e2ebeee0-4984-11d3-83fc-
0080c7e29271

 1996–2005 PC/SC Workgroup. All rights reserved. Page 22

Interoperability Specification for ICCs and Personal Computer Systems
Part 9. IFDs with Extended Capabilities

0080c7e29271

PCSC_ENHANCED e3848560-4984-11d3-83fc-
0080c7e29271

5.2 Interface IDs

These are the IIDs of the interfaces defined in this part 9.

Interface IID

SECUREPIN 2d49d340-4984-11d3-83fc-
0080c7e29271

DISPLAY 2eb1eec0-4984-11d3-83fc-
0080c7e29271

USERCONFIRMATION 2f82fa60-4984-11d3-83fc-
0080c7e29271

USERENTRY 30ba41e0-4984-11d3-83fc-
0080c7e29271

 1996–2005 PC/SC Workgroup. All rights reserved. Page 23

	System Architecture
	Application Context
	Introduction
	Definition
	Association with IFDs
	Resource Locking

	Logical Devices
	Slot Logical Devices and Multi-slot ICC Readers
	Functional Logical Devices

	IFD Service Provider
	Functional Definition
	Syntax
	Data types
	Calling Conventions
	Data structure
	PINBLOCK
	PINVERIFY
	PINCHANGE

	Defined constants
	Error codes
	Required Interface
	Class ENHANCEDIFD
	Properties
	Methods

	Optional Interfaces
	Class SECUREPIN
	Class DISPLAY
	Class USERCONFIRMATION
	Class USERENTRY

	Examples

	GUID References
	PC/SC Application Contexts
	Interface IDs

