
Interoperability Specification for ICCs
and Personal Computer Systems

Part 7. Application Domain and Developer Design
Considerations

Apple Computer, Inc

Axalto.

Gemplus SA

Infineon Technologies AG

Ingenico SA

Microsoft Corporation

Philips Semiconductors

Toshiba Corporation

Revision 2.01.01

September 2005

Copyright © 1996–2005 Apple, Axalto, Gemplus, Hewlett-Packard, IBM, Infineon, Ingenico, Microsoft,
Philips, Siemens, Sun Microsystems, Toshiba and VeriFone.

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY. AXALTO, BULL CP8, GEMPLUS,
HEWLETT-PACKARD, IBM, MICROSOFT, SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA, AND
VERIFONE DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF
PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS
SPECIFICATION. AXALTO, BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT, SIEMENS
NIXDORF, SUN MICROSYSTEMS, TOSHIBA, AND VERIFONE, DO NOT WARRANT OR REPRESENT
THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Windows and Windows NT are trademarks and Microsoft and Win32 are registered trademarks of Microsoft
Corporation.
PS/2 is a registered trademark of IBM Corp. JAVA is a registered trademark of Sun Microsystems, Inc. All
other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Revision History

Revision Issue Date Comments
2.00.01 May 28, 2004 Spec 2.0 Final Draft
2.01.00 June 23, 2005 Final Release
2.01.01 September 29, 2005 Changed Schlumberger to Axalto

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

Contents

1 ARCHITECTURE, SCOPE 1

2 IMPLEMENTATION CONSIDERATIONS 3

2.1 Writing Applications Using Service Provider and Resource Manager
Interfaces 3

2.2 Advantages of using these interfaces 4

3 RUN-TIME CONSIDERATIONS 5

3.1 Determining Resources 5
3.1.1 Determining Installed IFDs 5
3.1.2 Determining Installed ICC Types 6
3.1.3 Monitoring Card Events 7

3.2 Connecting to the Desired ICC 8
3.2.1 Connecting to Multi-application ICC 8
3.2.2 Working with a Known IFD and ICC 8
3.2.3 Working with a Known IFD 9
3.2.4 Working with Known ICCs and IFD Groups 10
3.2.5 Working with a Known ICC Interface 11

3.3 Device Sharing and Control 12

3.4 ICC Security Services 12
3.4.1 Authentication Services 12
3.4.2 Security State Management 13
3.4.3 Secure Messaging 13

3.5 Recovering from Errors 14

4 INSTALLATION AND CONFIGURATION 16

4.1 Installation & Software configuration 16

 1996–2005 PC/SC Workgroup. All rights reserved. Page i

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

1 Architecture, Scope

IFD Service Provider

ICC Service Provider

 IFD
Handler

 IFD
Handler

 IFD
Handler

ICC Aware Applications

ICC Resource Manager

 IFD IFD

ICC ICC

 IFD

ICC

The software design co
development of application

Part 7 describes the way I
the ICC subsystem. By usi
layers, an application can u
specific IFD, or to some ex

 1996–2005 PC/SC Workgrou
Figure 1: PC/SC Architecture
nsiderations presented in this specification address the
s built on the architecture presented in Figure 1.

CC-aware applications can use the functionality provided by
ng the ICC Resource Manager and the ICC Service Provider
se ICC functionality with some level of independence from a

tent, from a specific ICC.

p. All rights reserved. Page 1

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

Some general design considerations that the application developer should take into
account are described in Section 2, “Implementation Considerations.” Section 3
describes the “Run-Time Considerations” that the application needs to take into account,
as well as some example scenarios.

For a general overview of this architecture, please refer to Part 1, “Introduction and
Architecture Overview” of the Interoperability Specifications. For a detailed description of
the ICC Resource Manager, refer to Part 5 “ICC Resource Manager Definition.” For
specific information about the ICC Service Provider and the functionality of your ICC,
please refer to Part 6, “ICC Service Provider Interface Definition,” and to the
documentation provided by the ICC vendor.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 2

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

2 Implementation Considerations

2.1 Writing Applications Using Service Provider and Resource Manager
Interfaces

In the described architecture, the Interface Device (IFD) subsystem (including IFD plus
the handler) is provided by the IFD vendor, and the ICC subsystem (including the ICC
and ICC Service Provider) is provided by the ICC vendor or ICC issuer. The application
developer does not generally need to package any components related to ICC or IFD
management.

An application developer who uses this architecture can access different services by
using a functional API, or an object model interface such as C++, ActiveX, and Java.

Although this architecture is platform-independent, there are some general assumptions
about the services provided by the operating systems for which an application is
targeted:

• Multithreading capability. Most applications require two or more threads: one to
monitor events through calls to ScardTrack::GetStatusChanges(), and one to
perform the functional tasks of communicating with the ICC, handling UI messages,
and so on.

• Asynchronous event and message handling. This is required for operations such
as detecting card removal and insertion.

• A shared library mechanism with dynamic linking to shared code. This allows
loading an ICC Service Provider, based on the type of ICC inserted into an IFD.

There are three ways to make use of this architecture:

1. Use vendor ICCSPs. When the supplied ICCSP interfaces correspond to an
application’s requirements, the application can (and should) use those ICCSPs to
accomplish the requested actions on IFDs and ICCs. Interfaces for file access,
authentication, and cryptographic services are defined in Part 6. ICCSP vendors may
also provide proprietary interfaces for electronic purses, industry specific functions or
special security functions.

2. Develop a layered ICCSP. When functionality not defined by vendor-supplied
ICCSP interfaces is required, application developers can provide custom ICCSPs
that meet their needs. They must, at minimum, expose the interfaces specified in
Part 6. Domain-specific interfaces can be added to this ICCSP. This architecture
allows multiple layers on a single system and also allows the implementation of
ICCSPs to support multi-application ICCs.

3. Access the Resource Manager directly. This is useful when an application needs
low-level control of the IFD or the ICC. Reserve direct Resource Manager access for
very specific uses of IFDs or ICCs, such as personalization systems.

In these three cases, an application developer can access the IFD subsystem through
the high-level interfaces implemented by the Resource Manager. No components related
to IFD management need to be packaged with the application. In cases 1 and 2, there is
no need to package any components related to ICC management, because this

 1996–2005 PC/SC Workgroup. All rights reserved. Page 3

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

functionality is provided by the high-level interfaces of the ICC Service Provider.

When an application needs to manage a connection to an ICC, it uses the Resource
Manager, defined in Part 5 of this specification, to locate the requested IFD or ICC. The
application can then use the services provided by the ICCSPs.

The architecture provides the following methods for an application or ICCSP to connect
to an ICC or IFD:

• The application can access whatever ICC is present in a specific reader. The
Resource Manager provides an interface that allows you to connect to whatever ICC
resides in a specified IFD. This is the simplest form of establishing communication
with an ICC.

• The application can search for a specific ICC within a specified IFD group. When an
application needs to interact with an ICC, it identifies the ICC by a friendly name, and
specifies a group of IFDs in which the ICC may appear. The Resource Manager
searches the group of IFDs for any ICC with an ATR string matching the named ICC,
and returns status information to the application.

• The application can search within a specified IFD group for any ICC that provides a
specified set of ICC interfaces. This is similar to the previous case, but any named
ICC that supports all listed interfaces is considered a match.

When an application asks for an ICC, either by name or by interface, it supplies a list of
IFD names in which it hopes to find the target ICC.

The application can use the context established by the preceding task to

• Use the ICCSP for high-level access to the ICC.

• Use the Resource Manager directly to have access to the low-level interface provided
by the Resource Manager. This approach should be reserved for very specific
applications, because it doesn’t allow an application to operate independently of the
IFDs or ICCs.

2.2 Advantages of using these interfaces
This specification is written using a system-independent formalism to promote and allow
implementations that are independent of a specific programming language or computer
architecture. This architecture is designed to allow maximum interoperability,
upgradability, and flexibility. It allows you to create applications that do not need to target
a specific ICC or IFD. End users can then run applications within this architecture by
adding modules called “IFD handlers” and “ICC Service Providers,” which are
components available from the IFD and ICC vendors, ICC issuers or from third-party
software providers. It allows different software vendors to provide ICCs, IFDs, and
applications that can cooperatively use and share resources, thus enabling multiple ICC-
aware applications to run simultaneously.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 4

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

3 Run-Time Considerations

This section describes considerations related to run-time application behavior. It
discusses the following tasks:

• Dynamic determination of available system resources
• Connecting to the desired ICC
• Device sharing
• Working with ICC security services
• Error recovery

This section provides information to aid application developers in understanding how to
best meet their operational requirements. It discusses mechanisms for building several
types of applications. As described in Section 2, there are three basic types of
applications that may be developed to take advantage of ICC technology.

First, there will be applications designed to work with a specific IFD device. These may
depend on a specific ICC type, or may work with several ICC types. This model is
appropriate for applications such as ATMs, vending machines, public kiosks, and ICC
personalization stations. Such applications would be designed to monitor a specific IFD
and then respond after an ICC is inserted. This response could be triggered
automatically, based on an ICC insertion event, or manually, based on user input.

A second kind of application is designed to work with a specific ICC, or a set of
functionally equivalent ICCs. This approach is expected to be common, because
applications tend to be designed to accomplish a specific objective. As such, these
applications will require ICCs that contain appropriate application data or code.
Examples could include a specific type of payment ICC, a group of similar payment
ICCs, or a healthcare ICC.

Finally, it is possible to write applications that work with any ICC that supports a required
interface. This approach is very reasonable for applications that use generic storage
services or cryptographic services. In the future, it may also be possible to write
applications that use standardized interfaces in markets such as payment, healthcare,
and telecommunications.

3.1 Determining Resources

Applications will need to determine installed IFD characteristics and supported ICC
types. This can be done either at installation time or run time, depending on the specific
needs of the application. In addition, many applications will need to monitor ICC insertion
and removal events at run time, and track the specific ICCs available. Using these basic
services is described in the subsequent material. In addition, Section 2 discusses the
use of these services to locate and connect to a desired ICC. The architecture allows the
implementation of completely dynamic systems where support for specific ICC is loaded
at run time through network services.

3.1.1 Determining Installed IFDs

To maximize flexibility, applications should be designed to work with the available IFDs,
or an appropriate subset, on a system. While it is possible to create a static binding
between an application and a specific IFD, this is not the recommended approach.
Rather, applications should be designed to work with a specific IFD group or groups.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 5

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

The notion of IFD groups was introduced in Part 5 of this specification. Groups provide a
mechanism for specifying logical collections of IFDs. They will generally be created and
managed by the administrator on a system (who may be the end user). The expectation
is that groups will be fairly stable, with IFDs being added or removed over time. By using
groups, applications can adapt at run time to changes in IFD resources.

Available IFD groups can be determined during the installation phase of an application
or at run time. The list of defined IFD groups may be determined by:
1. Instantiating an object of the RESOURCEMANAGER class by calling its constructor.
2. Establishing a communication context to the ICC Resource Manager by calling

RESOURCEMANAGER::EstablishContext().
3. Instantiating an object of the RESOURCEQUERY class by calling its constructor.

The reference to the RESOURCEMANAGER object created at step 1 is supplied as
a parameter.

4. Determine the defined IFD groups by calling the
RESOURCEQUERY::ListReaderGroups() method.

In general, the application should ask the user to specify the Group or Groups it is to
work with. The Group names are arbitrary and may vary by system, so attempting to
automatically configure the application based solely on Group names is not
recommended. Note that if the application has a user interface, it should give the user
the ability to select the default Group and reader. This setting will be saved in persistent
storage, and can be modified at a later time. An application with no user interface can
have a configuration program to accomplish this task.

When the application is invoked in the future, it can determine the specific readers within
the Group(s) using the RESOURCEQUERY::ListReaders() method.

3.1.2 Determining Installed ICC Types

As described in Part 5, ICC Types are registered with the Resource Manager to make
them available. For each ICC Type, the Resource Manager tracks the associated ICC
ATR string and ATR mask, a friendly name for the ICC, a reference to the available
Service Provider(s), and a list of supported interfaces.

To make use of a specific ICC Type, an application must know the appropriate Service
Provider to use and its friendly name. An application can retrieve this information from
the Resource Manager by the following process:

1. Instantiating an object of the RESOURCEMANAGER class by calling its constructor.
2. Establishing a communication context to the ICC Resource Manager by calling

RESOURCEMANAGER::EstablishContext().
3. Instantiating an object of the RESOURCEQUERY class by calling its constructor.

The reference to the RESOURCEMANAGER object created at step 1 is supplied as
a parameter.

4. Invoking the RESOURCEQUERY::ListCardTypes() method to enumerate the
known ICC Types. The application developer can provide a list of known ATR strings
associated with the ICCs of interest, a list of required standard interfaces, or no
qualifications to this method. All ICC Types matching the specified qualifications are
returned.

5. Retrieving the Service Provider reference for a specific ICC. To do this, use the

 1996–2005 PC/SC Workgroup. All rights reserved. Page 6

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

RESOURCEQUERY::GetProviderId() method and the list of supported interfaces
retrieved using the RESOURCEQUERY::ListInterfaces() method.

An application can determine this information at installation time if it is designed to
operate only with a specific ICC. However, it is safer to retrieve this information at run
time to insure that the application is working with information that reflects the current
(true) state of the system.

3.1.3 Monitoring Card Events

Many applications need to monitor ICC insertion and removal events. As described later
in this specification, monitoring card events may play an important part in locating the
desired ICC. Monitoring is also important when allowing an application to take
appropriate action in response to these events without requiring excessive user
interaction. For example, an application could wait as a background task until an
appropriate ICC is inserted, and then automatically connect to the ICC. Similarly, an
application could automatically suspend itself, or terminate, if the user removes the ICC
it requires.

To monitor insertion and removal events, use the following procedure:

1. Instantiate an object of the RESOURCEMANAGER class by calling its constructor.

2. Establish a communication context to the ICC Resource Manager by calling
RESOURCEMANAGER::EstablishContext().

3. Instantiate an object of the SCARDTRACK class by calling its constructor . A
reference to the RESOURCEMANAGER object is provided as a parameter.
Determine the IFDs of interest, as described in Section 3.1.1, and create an
SCARD_READERSTATE structure for each IFD (see Part 5 for details).

typedef struct {
 STR Reader; // IFD name
 VOID UserData; // user defined data, may be NULL
 DWORD CurrentState; // current state of IFD at time of
 // call
 DWORD EventState; // state of IFD after state change
} SCARD_READERSTATE;

4. Call the SCARDTRACK::LocateCards() method, supplying all ICC Types of interest
as parameters to determine if a desired ICC is already inserted into an IFD. If the
returned SCARD_READERSTATE structures indicate the presence of a desired
ICC, skip to step 6.

5. To wait for a desired ICC type to be inserted, call the
SCARDTRACK::GetStatusChange() method. Because this method will block until a
change occurs in the state of one of the IFDs associated with the provided
SCARD_READERSTATE structures, a separate thread should be used. Information
on the nature of the change is returned in the
SCARD_READERSTATE::EventState method.

6. If an insertion event has occurred for a specified IFD, the application can then
determine which ICC Type was inserted by calling the
SCARDTRACK::LocateCards() method. The type of ICC(s) of interest is provided
as a parameter. If a desired ICC Type is not present, go back to the preceding step.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 7

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

Currently, the final step (6), determining the ICC Type, cannot be guaranteed to uniquely
identify an ICC Type. This is due to the lack of established standard methods for
uniquely determining information identifying an ICC. The only information that can be
retrieved with assurance from all ICCs is their ATR string. There are standards in
ISO/IEC 7816-4 for encoding identifying information in the ATR history bytes. However,
these are not used by a significant number of existing ICCs. Consequently, multiple
ICCs can use identical ATR strings, but may be otherwise incompatible. However, it is
highly recommended that ICC developers follow the ISO/IEC 7816 recommendations for
ATR encoding. Only with an unique ATR the architecture can guarantee fully automated
operation.

Application developers should be prepared to deal with the case in which multiple ICC
Types map to the same ATR sequence. You can determine this by invoking the
RESOURCEQUERY::ListCardTypes() method with the ATR for the desired ICC(s). In
the event that multiple ICCs are indistinguishable using the ATR, applications should
provide an appropriate user interface to allow the user to resolve such conflicts.

3.2 Connecting to the Desired ICC

A fundamental issue that each ICC-aware application must address is locating and
connecting to the desired ICC at run time. Application developers have a range of
options in ways to perform this function. The architecture described in this specification
allows the application developer to make the appropriate tradeoffs in terms of
development complexity and flexibility. The subsequent material describes the various
mechanisms available to application developers.

3.2.1 Connecting to Multi-application ICC

Multiapplication ICCs have an internal structure with an ICC carrying basic
administration functions and multiple applications. A banking ICC may carry common
applications like credit, debit, electronic purse, homebanking access and others. The
architecture allows to build structured ICC service providers with application selection
according to ISO 7816-5, EMV or other standards. However, in order to enable plug and
play operation for ICCs and applications a common method for identifying the card
operating system, the application selection method and the application is required. The
PC/SC Workgroup will work with standards organizations and industry working groups to
define a specification for management of multi-application ICCs.

3.2.2 Working with a Known IFD and ICC

The simplest approach to locating the desired ICC is to pre-configure the application
(generally at installation time) to use a specific IFD and ICC Service Provider. You can
determine the available IFDs, ICC Types, and associated Service Providers by using the
RESOURCEQUERY object, as described in Sections 3.1.1 and 3.1.2.

When the application is started, it simply retrieves the desired IFD name and a reference
to the Service Provider from private storage as part of its initialization process. To
connect to the desired ICC it:

1. Instantiates an object of class SCARD by calling the constructor exposed by the
Service Provider.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 8

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

2. Requests a connection to the ICC by invoking the SCARD::AttachByIFD() method.

Assuming this is successful, the application can then make use of the desired ICC
services by calling the interfaces exposed by the Service Provider. When the application
has finished using the ICC, it need only destroy the SCARD object to terminate its
connection to the ICC and the Service Provider.

If the connection request returns an error, the application must request that the ICC be
placed in the desired IFD, and then attempt to connect again. Because the application
isn’t monitoring insertion events, it must rely on the user to tell it when the correct ICC is
inserted so it can attempt to connect.

The primary drawback to this approach is the lack of flexibility. Changes in the system
configuration, such as installing a different IFD or renaming the IFD, will likely require
that the application be reconfigured. Similarly, if the user receives an upgraded ICC, it is
likely the application will need to be reconfigured to use a new Service Provider. In
addition, this approach requires that the ICC be placed in a specific IFD. This may lead
to some confusion and require extra ICC swapping on a system where the user has
multiple IFDs and is using multiple ICCs.

This approach also limits the application developer in a couple of important ways. First, it
forces the application to select a specific ICC Type to work with. This precludes the
application from easily working with any functionally equivalent ICC that may be present
(see Section 2). Second, it does not provide a means for the application to determine
enhanced IFD features that a vendor may have provided, or to request use of those
features. If this is important, the application must make use of the interfaces exposed by
the Resource Manager, as described in the next section.

3.2.3 Working with a Known IFD

Working with a known IFD represents the next level of complexity in the use of
preconfigured IFDs and Service Providers. In this instance, it is reasonable to pre-
configure the application to work with a specific IFD, but the binding to a specific Service
Provider (or ICC Type) is made at run-time.

This approach is reasonable if the typical user is assumed to have only a single IFD, or if
a specific IFD will always be used for ICCs of a particular type. For example, a user may
have a single IFD with secure PIN entry support required for the use of specific financial
services. In this case, it is reasonable for an application supporting these financial
services to require a specific IFD. The drawback, of course, is that changes in the
available IFDs will likely necessitate reconfiguration of the application.

To connect to an ICC inserted in the designated IFD, the application:

• Instantiates an object of the RESOURCEMANAGER class by calling the constructor.

• Establish a communication context with the ICC Resource Manager by calling
RESOURCEMANAGER::EstablishContext().

• Wait for ICC insertion for the designated IFD, as described in the section 3.1.3.

After determining that an ICC has been inserted, the application should determine if the
ICC Type is one it is capable of working with. (This is most easily done by calling
SCARDTRACK::LocateCards() with the Cards parameter sequenced through the ICC
Types of interest). If it is an unrecognized ICC Type, the application should continue

 1996–2005 PC/SC Workgroup. All rights reserved. Page 9

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

monitoring for the next insertion event. If it wants to work with the ICC, then the following
actions are taken:

1. Instantiate an object of the SCARDCOMM class.

2. Open a connection to the ICC by calling SCARDCOMM::Connect().

If this process is successful, the application is now connected to the ICC. It may now
interact directly with the ICC by using the SCARDCOMM::Read() and
SCARDCOMM::Write() methods. However, this requires detailed knowledge of the ICC
implementation, and the application will most likely pass control to the appropriate
Service Provider. This is done by:

1. Instantiating an object of the SCARD class by calling the constructor exposed by the
appropriate Service Provider.

2. Passing control of the existing connection to the Service Provider by calling
SCARD::AttachByHandle(SCARDCOMM::hCard). Note that the SCARDCOMM
object instance should be deleted only after the SCARD object to avoid prematurely
destroying the communications context.

The application can then access the ICC services using the high-level interfaces
exposed by the Service Provider. As an alternative, the application could simply call the
Service Provider method SCARD::AttachByIFD() after the IFD and ICC Type are
known. This is the preferred approach if all interaction with the ICC will be done using
the Service Provider’s exposed interfaces.

It is generally not recommended for applications to mix calls to the Resource Manager
SCARDCOMM object and Service Provider interfaces. If an application does this, it
should make appropriate use of transaction support, and should pay careful attention to
the ICC interface requirements to avoid unexpected results.

One reason an application may need to directly interact through an SCARDCOMM
object is to control specific IFD features. An application can retrieve information about
the IFD by calling the SCARDCOMM::GetReaderCapabilities() method. This method
retrieves information for specific properties defined by the tag values given in Part 3 of
this specification. The IFD vendor can define additional tags for proprietary features,
such as a secure display or a PIN pad. The vendor must then specify specific control
codes (see Part 3, Section 3.2.4) to access these features through the
SCARDCOMM::Control() method. Also, using the
SCARDCOMM::SetReaderCapabilities() method, an application developer can set
values for the writable subset of the IFD properties.

3.2.4 Working with Known ICCs and IFD Groups

This represents a more general approach than those based on a statically determined
IFD, though it is more complex to implement. In this case, it is assumed that the
application knows both the ICC(s) and IFD Group(s) it can work with. The major
advantage of working with known ICCs and IFDs is that the application can connect to
an appropriate ICC placed in any IFD within the designated Group(s). Also, altering the
assignments of IFDs to Groups can be done without impacting operation of the
application.

To determine the availability of a desired ICC Type, an application should proceed in the
following way:
1. Determine the IFDs within the Groups of interest, using the process described in

 1996–2005 PC/SC Workgroup. All rights reserved. Page 10

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

Section 3.1.1.
2. If the friendly names for the ICC Types of interest aren’t known, then determine the

ICC Types of interest using the process described n Section 3.1.2. The desired ICC
Types can be determined by supplying the ATR string(s) associated with ICCs or
searching for known friendly names.

3. Wait for the insertion of one of the desired ICC Types using the process described in
Section 3.1.3.

The application should, in general, provide user-interface support to aid the user in
inserting the ICC into an appropriate IFD. If the application determines that no
desired ICC is in an IFD, it is recommended that the application prompt the user to
place the desired ICC into an appropriate IFD. The appropriate IFD(s) depend on
whether there are empty IFDs, or the current state of IFDs that have ICCs inserted in
them.

Using the methods of the SCARDTRACK object, the application can determine the state
of all IFDs of interest. Hence, the application will know if any IFDs are empty. If there
are empty IFDs, the user should be prompted to use one of them. If there are no
empty IFDs, the application can indicate which IFDs contain ICCs that are not in use.
The application can recommend that one of these IFDs be used for the new ICC. If
all IFDs contain ICCs in use, then the application can do little beyond asking the user
to swap out one of the ICCs currently in use.

After a desired ICC has been located in an IFD, the application connects to the ICC
using the process described in the preceding section. In summary, the application has
two options: it can connect directly through the appropriate Service Provider using the
SCARD::AttachByIFD() method, or it may connect through the Resource Manager
using the SCARDCOMM::Connect() method. The former is simpler, but allows less
control to the application.

3.2.5 Working with a Known ICC Interface

This approach varies slightly from the preceding case. It is more general in that the
application can work with any ICC that has a Service Provider supporting the required
interfaces. This potentially allows the application to take advantage of new or upgraded
ICC Types as they are introduced to the system, without any reconfiguration.

Use of this approach is only slightly more complex than the preceding case, the principle
difference being that the desired ICC Types are determined by invoking the
RESOURCEQUERY::ListCardTypes() method with a list of required Interfaces (see
Section 2). From that point, establishing a connection to a desired ICC proceeds as
described in Section 3.2.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 11

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

3.3 Device Sharing and Control

Current (1997) ICCs are fairly simple devices with limited ability to manage multiple
transaction streams. In this context, a transaction stream includes a sequence of
commands to the ICC that may not be interrupted without destroying critical intermediate
state data. ISO/IEC 7816 defines a “channel” mechanism for handling up to four logical
streams between external applications and the ICC; however, few current ICCs support
this. Most devices are designed to manage only a single stream.

When employed as part of a PC system supporting multiple concurrent applications, the
limited ability to support multiple concurrent transaction streams imposes some
significant limitations. It forces the applications or Service Provider developer to explicitly
control device sharing to:

• Insure requests for ICC services are completed without error
• Allow other applications timely access to the ICC resource

To meet these objectives, it is recommended that applications use the following
guidelines:

• Limit the use of “exclusive” access to an ICC. There are few cases where this
is necessary. If you do require exclusive access, close the connection to the
ICC as soon as the required ICC operations are complete.

• Use the Resource Manager transaction support for all operations requiring
more than a single command-response operation.

• Limit transactions to the minimum number of commands necessary due to
intermediate state requirements. That is, don’t pack multiple transactions
within a single Begin-End Transaction request for convenience. This will likely
block access by other applications for excessive time periods.

• Don’t “reset” an ICC unless absolutely necessary. In general, this should be
done only if required to clear the ICC security state or to attempt recovery
from a fatal error that has caused the ICC to become unresponsive.

• Close connections to ICCs before program termination.

3.4 ICC Security Services

One of the prime motivations for using ICC technology is the inherent security it provides
for storing data that is private to either the user or application. Access to, and the ability
to manipulate such information, is generally protected by one or more security
mechanisms. Hence, the ability to interact with the ICC’s security interfaces can be of
critical importance. The subsequent material discusses application development
considerations in using these services.

3.4.1 Authentication Services

ICCs typically support user or application authentication services. User authentication,
often referred to as CHV (CardHolder Verification), is typically done by having the user
supply a secret code (or PIN) to the ICC. As described in Part 6 of this specification,
Service Providers should support CHV requirements and take care of prompting the user
at appropriate times. However, application developers may explicitly request that CHV
be performed through a CHVERIFICATION object.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 12

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

Many ICCs will additionally support the ability for applications to authenticate to the ICC
using cryptographic methods. This encompasses the Internal Auth and External Auth
mechanisms defined in ISO/IEC 7186-4, but may also include proprietary methods. If
supported, a Service Provider will expose an interface to this service through a
CARDAUTH object. The cryptographic keys and algorithms used to support these
functionalities will be ICC-specific, and it is the responsibility of the application developer
to obtain the required information from the appropriate vendor or ICC issuer.

3.4.2 Security State Management

ICCs maintain an internal security state that reflects current access rights. This security
state is generally affected by the current file selection and prior authentication actions.
Applications that access the ICC solely through a Service Provider can generally expect
the Service Provider to handle required security state management. To determine the
requirements for security state management in an application, the application
develpoper should check the specifications for any domain-specific interfaces the
Service Provider may implement. In addition, if the application works directly with the
ICC through the Resource Manager to access functionality not exposed through a
Service Provider interface, then the application must handle security state management.

Management of security state information is generally ICC-specific and application-
specific. If an application needs to manage this state itself, obtain the necessary
information from the ICC vendor or issuer. In general, achieving a desired set of access
permissions will require stepping through a sequence of file selection and authentication
actions in a prescribed order. This sequence should be done within a single transaction
sequence to avoid the possibility of another application corrupting the desired state.

Because each security state implies specific access rights, it is also important for an
application to clear the security state when a transaction is complete to prevent another
application from taking advantage of this state. Clearing this security state can vary by
ICC. In ICCs that follow the security state management guidelines in ISO/IEC 7186-4,
the current security state may usually be cleared by selecting the MF of the ICC. In the
worst case, clearing the security state may require resetting the ICC. If necessary, you
can do this by setting the SCARD_RESET_CARD flag before calling the
SCARDCOMM::Disconnect() or SCARDCOMM::EndTransaction() method.

3.4.3 Secure Messaging

Secure Messaging (SM), as defined in ISO/IEC 7816-4, encompasses the application of
cryptography to solving the problem of data integrity, authentication, and confidentiality.
Specific algorithms and cryptographic keys are ICC-specific or domain-specific, and to
use SM features, you will need to obtain specific implementation information from the
ICC vendor or issuer.

The services that the Service Provider supports determine the SM requirements in an
application. For example, if the Service Provider internally implements required SM, the
application simply invokes the methods exposed by the Service Provider, and SM will be
applied as necessary. This puts the security burden on the Service Provider developers.
They must insure that required cryptographic keys are distributed in accordance with
domain security policy. In addition, they may need to validate the calling application to
prohibit hostile processes from attempting to access or modify (critical) data on the ICC.

Although this approach raises some serious security issues, it is reasonable in many
cases. As an example, we might assume that SM is used to protect critical ICC data

 1996–2005 PC/SC Workgroup. All rights reserved. Page 13

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

from modification (such as an electronic cash value) unless accessed by authorized
payment server applications software. In this instance, one option would be for the
Service Provider developer to write a client/server Service Provider in which the portion
of the Service Provider that implements SM resides only in the “trusted” payment server
environment.

The other option is for the Service Provider to not support SM. In this case, the
application software must contain the SM knowledge. The application developer must
build the ICC commands and handle the ICC responses using the low-level read/write
methods exposed by the Resource Manager SCARDCOMM class.

3.5 Recovering from Errors

Applications should be designed to provide robust handling of all possible error
conditions. These can arise from a variety of causes, some that can be recovered from,
and some that can’t. In the case of unrecoverable errors, the application should
gracefully close its connection to the ICC and alert the user. The user then has the
option of physically removing and reinserting the ICC to force a cold reset. Unless there
is a hardware failure in the system, this should clear the error condition and allow
operation to proceed. In the case of recoverable errors, the application should attempt to
silently recover and continue operation. For example, removal of a card by the user
during a WRITE operation. .

Possible errors and the recommended action are indicated in the following table.

Error/Warning
Description

Error Code Recommended Action

ICC reset by another
application

SCARD_W_RESET_CARD Reconnect to clear the
warning and continue
operation.

ICC removed by user SCARD_W_REMOVED_CARD
or
SCARD_E_NO_SMARTCARD

Disconnect from the ICC.
If the ICC is still required,
ask the user to re-insert the
ICC and reestablish
connection when the ICC is
detected.

ICC unpowered SCARD_W_UNPOWERED_
CARD

Reconnect to clear the
warning and repower the
ICC.

ICC response not
received

SCARD_E_TIMEOUT Re-attempt last command
twice. If the ICC remains
unresponsive, attempt to
reset the ICC.

ICC does not respond
to reset

SCARD_W_UNRESPONSIVE_
CARD

Attempt to reconnect to the
ICC to clear the warning. If
this is unsuccessful, an
application should attempt
no more than a single
additional reset attempt
before assuming the error

 1996–2005 PC/SC Workgroup. All rights reserved. Page 14

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

Error/Warning
Description

Error Code Recommended Action

is unrecoverable.
IFD device has failed SCARD_F_COMM_ERROR Disconnect and alert the

user. The User must
correct the problem with
IFD device.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 15

Interoperability Specification for ICCs and Personal Computer Systems
Part 7. Application Domain and Developer Design Considerations

4 Installation and Configuration

Applications shouldn’t rely on the names of IFDs, IFD groups, or ICCs presented during
installation, because the names can be changed and new IFDs or IFD groups can be
added during the lifetime of the application.

Information about the currently installed components can be obtained by database query
calls to the ICC Resource Manager as described earlier. Applications can interact with
the user to get the components they should work with, but this may not be comfortable
for the user. A better solution would be a configuration dialog exposed within an options
menu.

4.1 Installation & Software configuration

Configurable information for ICC-aware applications may include the following:
• The name of a specific IFD.
• The names of specific IFD groups.
• The name of a specific ICC.
• The name of the default IFD or IFD group.
• The name of a default ICC.
• Time-out values for actions like ICC insertion.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 16

	Architecture, Scope
	Implementation Considerations
	Writing Applications Using Service Provider and Resource Manager Interfaces
	Advantages of using these interfaces

	Run-Time Considerations
	Determining Resources
	Determining Installed IFDs
	Determining Installed ICC Types
	Monitoring Card Events

	Connecting to the Desired ICC
	Connecting to Multi-application ICC
	Working with a Known IFD and ICC
	Working with a Known IFD
	Working with Known ICCs and IFD Groups
	Working with a Known ICC Interface

	Device Sharing and Control
	ICC Security Services
	Authentication Services
	Security State Management
	Secure Messaging

	Recovering from Errors

	Installation and Configuration
	Installation & Software configuration

